
Please do not remove this page

Time Skewing: A Value-Based Approach to
Optimizing for Memory Locality
McCalpin, John; Wonnacott, David
https://scholarship.libraries.rutgers.edu/esploro/outputs/technicalDocumentation/Time-Skewing-A-Value-Based-Approach-to/991031549998604646/fi
lesAndLinks?index=0

McCalpin, J., & Wonnacott, D. (1998). Time Skewing: A Value-Based Approach to Optimizing for Memory
Locality. Rutgers University. https://doi.org/10.7282/T3ZG6WVV
Document Version: Author's Original (AO)

Downloaded On 2024/05/03 11:16:20 -0400

This work is protected by copyright. You are free to use this resource, with proper attribution, for
research and educational purposes. Other uses, such as reproduction or publication, may require the
permission of the copyright holder.

https://scholarship.libraries.rutgers.edu/esploro/outputs/technicalDocumentation/Time-Skewing-A-Value-Based-Approach-to/991031549998604646/filesAndLinks?index=0
https://scholarship.libraries.rutgers.edu/esploro/outputs/technicalDocumentation/Time-Skewing-A-Value-Based-Approach-to/991031549998604646

Rutgers University Department of Computer S
ien
e Te
hni
al Report 379

Submitted 2 Mar
h 1999

Time Skewing: A Value-Based Approa
h to

Optimizing for Memory Lo
ality

�

John M
Calpin

Sili
on Graphi
s Computer Systems

2011 N. Shoreline Blvd,

Mountain View, CA 94043.

email: m

alpin�sgi.
om

David Wonna
ott

Department of Computer S
ien
e

Haverford College

Haverford PA 19041.

email: davew�
s.haverford.edu

Revised to September 10, 1998

Abstra
t

As the gap between pro
essor and main memory speed
ontinues to

grow, higher
a
he hit rates are required for eÆ
ient pro
essor use. Re-

ent work on
ompile-time transformations to improve lo
ality in s
ienti�

progams has fo
used on loop fusion, tiling, and distribution; previous work

suggests that loop skewing is not useful in optimizing for lo
ality. In this

arti
le, we show that the value of loop skewing may only be evident in a

ompiler that in
ludes transformations that have not been applied in em-

piri
al studies of lo
ality (su
h as the inter
hange of imperfe
tly nested

loops). We also show how a new approa
h to data transformation
an be

used to further redu
e memory traÆ
 for these
al
ulations.

1 Introdu
tion

Sin
e about 1990, the relative
ost (in time) of main memory a

esses and

oating-point arithmeti
 have undergone a dramati
 shift for mi
ropro
essor-

based
omputers. One parti
ular metri
 is the time required to load a word from

a unit-stride data stream relative to the time required to perform a
oating-point

operation. As shown in [M
C95℄, this ratio has gone from near 1 in 1990 to at

�

This work is supported by funds from Haverford College.

1

least 20 in 1996, with an annual in
rease near 70% per year averaged a
ross the

industry.

This in
rease in the
ost of memory a

esses relative to
oating-point arith-

meti
 has had di�erent impa
ts on di�erent appli
ation areas, with some algo-

rithms in
omputational
uid dynami
s and signal pro
essing/image analysis

showing the largest sensitivity to the
ost of memory a

esses.

In this arti
le, we dis
uss te
hniques for improving memory lo
ality of simple

\sten
il operations", whi
h are prototypi
al for expli
it algorithms in
omputa-

tional
uid dynami
s and signal pro
essing/image analysis. These algorithms

iteratively apply a nearest-neighbor operator to evolve an initial
ondition to a

�nal state.

Wolf and Lam showed that, for some sten
il
al
ulations, loop skewing plays

a
ru
ial role in improving memory lo
ality [WL91, Figures 2 and 7℄, [Wol92,

Figure 4.1℄. However, their studies of
ompile-time lo
ality optimizations on

ben
hmark
odes [Wol92℄ suggest that loop skewing does not play a signif-

i
ant role in improving lo
ality in pra
ti
e. Some re
ent approa
hes to lo-

ality optimization have overlooked loop skewing (for example, [MCT96℄ and

[RMCKB97℄), on the grounds that Wolf and Lam found it was not useful.

In Se
tion 2 of this arti
le, we give example sten
il
al
ulations that are

outside the domain of the te
hniques of Wolf and Lam, and show that loop

skewing and tiling
an still be used to improve lo
ality. This leads us to
on-

lude that loop skewing should not be overlooked as a useful transformation

for improving memory lo
ality in
ompilers that
an handle more general loop

transformations. For our examples, loop skewing must be
ombined with either

(a) inter
hange of imperfe
tly nested loops, or (b) forward substitution of an

array expression and a new form of data transformation. The latter form pro-

du
es less traÆ
 to main memory, but at the
ost of a signi�
ant in
rease the

omplexity of loop bounds and subs
ript operations. We give the details of this

ombination of iteration spa
e and data transformation, whi
h we
all \time

skewing", in Se
tion 3. This arti
le also in
ludes a dis
ussion of related work

(Se
tion 4) and
on
luding remarks (Se
tion 5).

1.1 De�nitions

For the dis
ussion that follows, we will de�ne the ma
hine balan
e as the maxi-

mum sustainable rate of performing
oating-point arithmeti
 (typi
ally for data

in registers) divided by the maximum sustainable data transfer rate for unit-

stride a

esses. The ma
hine balan
e will therefore be a fun
tion of the lo
ation

of the data in the memory hierar
hy, and we
an speak of the L1
a
he ma
hine

balan
e, the L2
a
he ma
hine balan
e, the main memory ma
hine balan
e. For

distributed shared memory systems, there will be a
orresponding remote mem-

ory ma
hine balan
e, and for virtual memory ma
hines there will be a virtual

memory ma
hine balan
e.

Corresponding to the ma
hine balan
e parameters, we
an de�ne
ompute

balan
e (or loop balan
e) parameters. The
ompute balan
e parameters are

de�ned as the required number of
oating-point operations divided by the re-

2

// initialize C to zero

for (int i = 0; i<N; i++)

for (int j = 0; j<N; j++)

for (int k = 0; k<N; k++)

C[i℄[k℄ += A[i℄[j℄ * B[j℄[k℄;

Figure 1: Matrix Multipli
ation

quired number of memory referen
es to ea
h level in the memory hierar
hy. So

we have L1
a
he
ompute balan
e, L2
a
he
ompute balan
e, main memory

ompute balan
e, et
. In some
ases we may with to
ompare the number of

operations to the total number of memory referen
es|we
all this ratio simply

the
ompute balan
e.

In general, loop nests for whi
h the
ompute balan
e parameter is greater

than the ma
hine balan
e parameter of the memory
ontaining the data may

be
ompute-bound;
ode se
tions for whi
h the
ompute balan
e parameter is

less than the ma
hine balan
e parameter will be bandwidth-bound. When the

ompute balan
e is greater than the ma
hine balan
e, optimizations that redu
e

laten
y (su
h as prefet
hing) may help to improve performan
e by moving some

memory a

ess delays to times where the pro
essor is busy. However, laten
y

redu
ing optimizations
annot
ompensate for inadequate memory bandwidth.

The
omparison of
ompute and ma
hine balan
es
an be repeated at ea
h level

of the memory hierar
hy to examine how bottlene
ks
hange with \distan
e"

from the pro
essor.

Compute balan
e
an vary with the number of loops
onsidered; for exam-

ple, the k loop of the matrix multiply
ode in Figure 1 a

esses a

esses 3N

memory lo
ations and performs N multipli
ations and N additions, for a
om-

pute balan
e of

2

3

. Thus, we
annot only make use of CPU speed in ex
ess of

2

3

of the bandwidth of the memory in whi
h these data reside at the start of

the k loop, no matter what optimizations we apply to the k loop itself. The

inner two loops have a
ompute balan
e of approximately

1

2

(a

essing N

2

+2N

memory lo
ations during 2N

2

operations). However, the entire loop nest has a

ompute balan
e of

N

3

(3N

2

memory lo
ations and N

3

operations). Thus, even

ma
hines with extremely high main memory balan
e (su
h as 100) may not be

bandwidth bound during the multipli
ation of large arrays (su
h as 300x300).

Of
ourse, simply mat
hing
ompute balan
e to ma
hine balan
e does not

guarantee eÆ
ient pro
essor use|other fa
tors, su
h as
a
he interferen
e,

memory laten
y, or limits on
a
he size, may interfere. In su
h
ases, it may

be posible to
ounter these fa
tors with
ompile-time optimizations: Copying

an be used to redu
e
a
he interferen
e [LRW91, TGJ93℄, prefet
hing
an re-

du
e stalls due to laten
y [MLG92℄, and tiling [Wol89, WL91℄
an improve the

performan
e of this loop nest when the three arrays will not �t entirely in
a
he.

However, a mismat
h between
ompute balan
e and ma
hine balan
e does

identify
ases in whi
h bandwidth pla
es limits on lo
ality, no matter what we

3

for (int t = 0; t<=T; t++)

for (int i = 0; i<=N; i++)

A[i+1℄ = 1.0/3 * (A[i℄ + A[i+1℄ + A[i+2℄)

Figure 2: Three Point \In-Pla
e" Sten
il (from [WL91, Wol92℄)

for (int t = 0; t<T; t++)

{

for (int i = 0; i<N; i++)

old[i℄ =
ur[i℄;

for (int i = 1; i<N-1; i++)

ur[i℄ = 1.0/3 * (old[i-1℄ + old[i℄ + old[i+1℄);

}

Figure 3: Three Point Sten
il

do about interferen
e or laten
y. If we a loop nest performs N

2

al
ulations on

N

2

values, the only way to make this loop nest run faster than N

2

a

esses to

main memory is to ensure that the data are in
a
he before the nest starts{no

amount of optimization of the loop nest itself
an
hange this.

In this dis
ussion, we have ignored the issue of whether or not two distin
t

referen
es might refer to di�erent addresses that share a same
a
he line. The

al
ulations we
onsider traverse memory with unit stride; in su
h
ases, the

sharing of
a
he lines do not a�e
t the question of whether or not the memory

system has enough bandwidth to keep up with the CPU.

2 Sten
ils, Skewing, and Lo
ality

The
ode shown in Figure 2, and a variant of this
ode with three loops, were

used by Wolf and Lam to demonstrate their approa
h to optimizing data lo
ality

[WL91, Wol92℄. Note that these
odes have
ompute balan
es of O(T), so for

large values of T we may be able to a
hieve high degrees of lo
ality without

looking outside of this nest. Wolf and Lam show that high degrees of lo
ality
an

be produ
ed by �rst skewing the inner loop(s) to make the nest fully permutable,

and then applying tiling.

The te
hniques of Wolf and Lam require perfe
tly nested loops, or loops

that
an be
onverted to a perfe
t nest using the te
hniques given in Se
tion

2.7 of [Wol92℄. The sten
ils shown in Figures 3 and 4 lie outside the domain of

these te
hniques. However, if we align [ACK87℄ and fuse the two nests in the

t loop, we
an then skew and tile the loops and adjust the
ompute balan
e as

we would for Figure 2.

This
ombination of unimodular and non-unimodular transformations
an

4

for (int t = 0; t<T; t++)

{

for (int i = 0; i<ROWS; i++)

for (int j = 0; j<COLS; j++)

old[i℄[j℄ =
ur[i℄[j℄;

for (int i = 1; i<ROWS-1; i++)

for (int j = 1; j<COLS-1; j++)

ur[i℄[j℄ = 1.0/8 *

(old[i-1℄[j℄ +

old[i℄[j-1℄ + 4*old[i ℄[j℄ + old[i℄[j+1℄ +

old[i+1℄[j℄);

}

Figure 4: Five Point Sten
il

be des
ribed
onsi
ely in the framework of [KP94℄. In this framework, ea
h

iteration of ea
h statement is identi�ed with a unique tuple of integers. These

integers may
orrespond to the loop index value of a surrounding loop, or they

may indi
ate whi
h of several statements is being performed. For example, if

the loop nest in Figure 4 were the se
ond statement in a fun
tion, we
ould

identify iteration t = 4; i = 7; j = 6 of the assignment to old with the tuple

[2; 4; 1; 7; 1; 6; 1℄ (i.e. statement 2 of the fun
tion, t = 4, statement 1 in the t

loop, i = 7, statement 1 in the i loop, j = 6, statement 1 in the j loop), or

iteration t = 5; i = 4; j = 8 of the assignment to
ur with [2; 5; 2; 4; 1; 8; 1℄.

The lexi
ographi
al ordering of these tuples de�nes the exe
ution ordering of

the statements and iterations, so we
an des
ribe a reordering transformation

as a remapping of the tuples assigned to the iterations. Using this system, we

des
ribe aforementioned transformation of Figure 4 as:

f [2; t; 1; i; 1; j; 1 ℄!

[2; t=B; 1; (2t+ i� 1)=B; 1; j + 2t� 1; 1; (2t+ i� 1)%B; 1; t%B; 1 ℄ g

f [2; t; 2; i; 1; j; 1 ℄!

[2; t=B; 1; (2t+ i)=B; 1; j + 2t; 1; (2t+ i)%B; 1; t%B; 2 ℄ g

where B is the blo
ksize, whi
h must be known at
ompile time.

This transformation produ
es blo
ks that perform O(COLS � B � B) op-

erations while a

essing O(COLS � B) memory elements. Furthermore, only

O(B �B) values are live within the blo
k at any time. Thus, in the absen
e of

interferen
e, we should a
hieve main-memory
ompute balan
e of O(B), given

a
a
he of size O(B �B). We will return to the subje
t of interferen
e in Se
tion

4.

Note that it is not possible to a
hieve a main-memory
ompute balan
e

above 3 for Figure 4 without exploiting lo
ality between the two i/j nests

(unless both array �t entirely in
a
he). Tiling the i and j loops that surround

5

the
al
ulation may be ne
essary to produ
e this balan
e, if the
a
he
annot

simultaneously hold two rows of both arrays.

3 Time Skewing

It is possible to redu
e the number of main memory writes of the previous

sten
ils by a further fa
tor of two. Following the appli
ation of our algorithm

to the
ode in Figure 4 is somewhat diÆ
ult. We therefore use the simpler one-

dimensional sten
il
al
ulation shown in Figure 3 to illustrate our approa
h, and

then give a general formulation.

We start by performing data
ow analysis of the
ur and old arrays [Fea91,

PW93, Won95℄. The result of this analysis is a graph of the
ow of values

through the iteration spa
e, whi
h we
all the iteration spa
e data
ow graph.

Ea
h node represents a value produ
ed by some iteration of some statement

in the loop, and has in
oming edges from the other nodes whose values that

are used in the
al
ulations. This graph is represented impli
itly, and may

be parameterized by the values that des
ribe this spa
e or the
ow of values.

Figure 5 shows the data
ow values for Figure 3, assuming N=7 and T=3 (ignore

the shading for now). Note that we
an perform this analysis without knowing

N and T, but have stated them in this
ase to simplify the pi
ture.

This representation
an also be viewed as the result of array expansion (
on-

verting ea
h de�nition of an array element A[X℄ at time t into a de�nition of

A[t℄[X℄, and adjusting array uses to mat
h) and removal of temporary arrays

(in this example, sin
e old is not used after the loop, and old[t℄[i℄ is de�ned

as
ur[t-1℄[i℄, we
an repla
e the uses of old with uses of
ur), as shown

Figure 6. We use this notation in the following dis
ussion (and in Figure 5),

even though we do not a
tually store values in this way.

Note that only the values of
ur[T℄[*℄ are needed when the loop is over. All

other values
an be pla
ed temporarily in
a
he, and then overwritten without

ever being stored in main memory, as long as we �nish using ea
h value before

we overwrite it. In this example, we
an traverse the data
ow graph from lower

left to the upper right, keeping a band of values of thi
kness three in the
a
he

(shown in light gray on Figure 5), and storing ea
h �nal value in main memory

as we generate it (dark gray). This traversal allows us to read one new value

into
a
he (in this
ase,
ur[0℄[6℄) and
ombine it with other \intermediate"

values already in the
a
he (in this
ase,
ur[0℄[5℄,
ur[0℄[4℄,
ur[1℄[3℄,

and
ur[2℄[2℄) to produ
e a sequen
e of new intermediate and �nal values

(
ur[1℄[5℄,
ur[2℄[4℄, and
ur[3℄[3℄), and then release some intermediate

values that are no longer needed (
ur[0℄[3℄,
ur[1℄[2℄, and
ur[2℄[1℄).

This traversal lets us produ
e T new values while performing only one read

from, and one write to, main memory (assuming we
an keep the entire gray

band in
a
he). If we
annot keep 3T elements in
a
he at on
e, we blo
k the T

loop (again, let B be the blo
k size).

This reordering of iterations is identi
al to that dis
ussed in the previous

se
tion, ex
ept that we skew by t rather than 2t. It produ
es
ode with the

6

cur[0][3]

cur[0][2]

cur[0][1]

cur[1][2]

cur[1][1]

cur[0][0] cur[1][0]

cur[1][3]

cur[2][2]

cur[2][1]

cur[2][0]

cur[2][3]

i

t

cur[0][6]

cur[0][5]

cur[0][4]

cur[1][5]

cur[1][4]

cur[1][6]

cur[2][5]

cur[2][4]

cur[2][6]

cur[3][2]

cur[3][1]

cur[3][0]

cur[3][3]

cur[3][5]

cur[3][4]

cur[3][6]

Figure 5: Data
ow Graph of Three Point Average Cal
ulation

7

for (int t = 0; t<T; t++)

{

//
ompute new
ur[t+1℄ values from the values in
ur[t℄

ur[t+1℄[0℄ =
ur[t℄[0℄;

for (int i = 1; i<N-1; i++)

{

ur[t+1℄[i℄ = 1.0/3 *

(
ur[t℄[i-1℄ +
ur[t℄[i℄ +
ur[t℄[i+1℄);

}

ur[t+1℄[N-1℄ =
ur[t℄[N-1℄;

}

Figure 6: Three Point Average Cal
ulation in Single Assignment Form

same ratio of operations to values that are live a
ross blo
k boundaries. The

only question that remains is where to store the values that are not live: Figure

5 suggests that every value is stored in a new lo
ation|obviously this will not

improve memory lo
ality. Instead, we
reate an array (named \
a
he") of size

3 by B to hold all values in the grey bar.

If all values in the grey bar are stored in the \
a
he" array, then ea
h blo
k

reads N values from main memory, and writes N values into memory. The

other N(B � 2) values exist only temporarily in the
a
he array. In
ontrast, if

we transform the iterations without remapping the storage, we end up writing

new values into both the
ur and old arrays. The values stored in one of these

arrays are dead, but all 2N values will still be written into main memory (in the

absen
e of some me
hanism to inform the
a
he hardware about dead values).

Thus, our remapping of storage has redu
ed the number of writes to memory

by a fa
tor of two.

When transforming sten
ils of arrays of higher dimension, we must blo
k all

but the innermost loop (otherwise the tile size grows with N rather than B).

When a sten
il in
ludes values that are more than one element away, we skew

by larger fa
tors of t. In general, for a nest with loops i

1

:::i

n

inside a time loop

t, with dependen
e distan
es Æ

1

:::Æ

n

, we perform the following transformation:

f [t; i

1

; i

2

:::i

n

℄! [t=B; (i

1

+ Æ

1

� t)=B; (i

2

+ Æ

2

� t)=B; :::; (i

n�1

+ Æ

n�1

� t)=B;

i

n

+ Æ

n

� t;

(i

n�1

+ Æ

n�1

� t)%B; (i

2

+ Æ

2

� t)%B; :::; (i

1

+ Æ

1

� t)%B; t%B℄ g

(in the interest of simpli
ity, we have omitted the
onstant levels of the transfor-

mation, as they are unne
essary when only one statement is being transformed).

We
an des
ribe the mapping of values to memory lo
ations with a similar

notation: we des
ribe a mapping from the statement iterations to the address

expressions for ea
h array. For our transformation, values produ
ed at the end

of a blo
k of the time loop are stored in the original array (
ur); values that

are not live past the end of the blo
k are stored in
a
he. We must also use

8

additional arrays to store the values produ
ed at the ends of other blo
ked loops

(
alled tide arrays here). We do O(B) iterations before writing out a value to

either the
ur array or one of the tide arrays, so the introdu
tion of these

new arrays does not have a signi�
ant e�e
t on the balan
e of the resulting

omputation. The total data mapping, in the the notation used in [SW98℄, is

[tb; xb

1

; :::xb

n�1

; s

n

; xx

1

; :::xx

n�1

; tt℄!

ur[i

1

; i

2

:::i

n

℄;when tt = B � 1:

tide

j

[s

n

; xx

1

; :::xx

n�1

; tt℄;when xx

j

+ Æ

j

+ 1 � B

^(6 9k > j s:t: xx

k

+ Æ

k

+ 1 � B) ^ tt 6=B�1;

a
he[s

n

mod(Æ

n

+ 2); xx

1

; :::xx

n�1

; tt℄; otherwise:

The algorithms given in [KPR95℄ and [SW98℄
an be used to generate
ode

for the iteration spa
es and array subs
ript expressions, given the above de-

s
riptions of the iteration spa
e transformations and memory mappings. Note

that [SW98℄ is the only data transformation framework that
an represent this

transformation: other frameworks apply transformations to all uses of a given

array (rather than a single write statement), and require a single transformation

(rather than a set of transformations, produ
ing referen
es to di�erent arrays,

that together
over all iterations of the statement being transformed).

4 Related Work

Current te
hniques for improving lo
ality [GJ88, WL91, MCT96℄ are based on

the sear
h for groups of referen
es that may refer to the same
a
he line, assum-

ing that ea
h value is stored in the address used in the original (unoptimized)

program. That is, these te
hniques sear
h for referen
es that referring to the

same array element, or to adja
ent array elements (whi
h may share a
a
he

line), possibly in di�erent iterations of a loop. These te
hniques then reorder

al
ulations so that those referen
es that share
a
he lines o

ur together. Ref-

eren
es to di�erent arrays are often moved apart where possible, to redu
e
a
he

interferen
e. Reordering generally is a

omplished by
ombining loop distribu-

tion (to separate unrelated
al
ulations) and loop tiling and inter
hange (to

bring together a

esses to the same
a
he line). [WL91℄ also apply loop skewing

to enable tiling and inter
hange.

These te
hniques
an be applied to a wide range of
al
ulations, while we

have only studied sten
ils. However, our te
hnique
an be applied to sten
ils

that
ould not be optimized by previous te
hniques: they lie outside the domain

of the algorithm of Wolf and Lam, and more re
ent work has overlooked loop

skewing. Our full \time skewing" algorithm produ
es a smaller amount of main

memory traÆ
 than a mere reordering of the iterations without remapping of

the arrays used, though at a
ost of signi�
ant additional
ode
omplexity. This

ost may not be worth the savings in memory traÆ
 unless the pro
essor is

dramati
ally faster than memory. [SSW97℄ demonstrated that time skewing

an be used to greatly in
rease the speed of
al
ulations involving arrays that

are too large to �t in main memory.

9

Other te
hniques for improving lo
ality may be
onfounded by
a
he interfer-

en
e, espe
ially when the the size of a row of the array is a multiple of the
a
he

line size. This e�e
t
an be redu
ed by adjusting the array dimensions, or
opy-

ing ea
h tile into temporary storage before working with it [LRW91, TGJ93℄.

With our approa
h,
a
he interferen
e will only arise from
on
i
ts between our

small \
a
he" array and the arrays we use to store values at the edges of blo
ks

of iterations. Sin
e the allo
ation of these arrays is
ontrolled by our algorithm,

we may be able to eliminate interferen
e by redu
ing the size of our
a
he array,

and allo
ating the other arrays so that the elements we use will �t in the unused

a
he lines. Even without su
h aggressive te
hniques, our algorithm should not

ause mu
h
a
he interferen
e, sin
e most of the work is done entirely within the

\
a
he" array, whi
h is by de�nition small enough to �t entirely within
a
he.

Work on tolerating memory laten
y, su
h as that by [MLG92℄,
omplements

work on bandwidth issues. Optimizations to hide laten
y
annot
ompensate for

inadequate memory bandwidth, and bandwidth optimizations do not eliminate

problems of laten
y. However, we see no reason why the two approa
hes
annot

be used together.

5 Con
lusion

We have demonstrated that the value of loop skewing in improving memory

lo
ality may only be evident in a
ompiler that in
ludes transformations that

have not been applied in studies of lo
ality. Spe
i�
ally, some sten
ils require

that skewing be
ombined with either (a) the inter
hange of imperfe
tly nested

loops, or (b) forward substitution of array expressions and a new form of data

transformation. In other
ases, it may be ne
essary to skew and blo
k a nest

with in whi
h the outer loop is a while rather than a for, though we have not

addressed this
ase here. As we noted at the end of Se
tion 2, bandwidth pla
es

an upper limit on the memory lo
ality that
an be a
hieved without skewing

with respe
t to the outer \time" loop. Thus, we
on
lude that loop skewing

should not be overlooked in the sear
h for transformations that improve memory

lo
ality.

We have also shown that data transformation, when used in
ombination

with iteration spa
e transformation, may be useful as a tool for further redu
ing

memory traÆ
 in sten
il
al
ulations. We formulated our approa
h by starting

with a des
ription of the data
ow in the
al
ulation (a fundamental
hara
ter-

isti
 of the algorithm), rather than by sear
hing for lo
ality based on the arrays

used by the programmer (an artifa
t of the expression of the algorithm). While

both approa
hes produ
e the same iteration spa
e transformation, our approa
h

does provide insight into what values a
tually need to be written out to main

memory.

10

Referen
es

[ACK87℄ R. Allen, D. Callahan, and K. Kennedy. Automati
 de
omposition of s
ienti�

programs for parallel exe
ution. In Conferen
e Re
ord of the Fourteenth ACM

Symposium on Prin
iples of Programming Languages, pages 63{76, January

1987.

[Fea91℄ Paul Feautrier. Data
ow analysis of s
alar and array referen
es. International

Journal of Parallel Programming, 20(1):23{53, February 1991.

[GJ88℄ D. Gannon and W. Jalby. Strategies for
a
he and lo
al memory management by

global program transformation. Journal of Parallel and Distributed Computing,

pages 587{616, 1988.

[KP94℄ Wayne Kelly and William Pugh. Determining s
hedules based on performan
e

estimation. Parallel Pro
essing Letters, 4(3):205{219, September 1994.

[KPR95℄ Wayne Kelly, William Pugh, and Evan Rosser. Code generation for multiple

mappings. In The 5th Symposium on the Frontiers of Massively Parallel Com-

putation, pages 332{341, M
Lean, Virginia, February 1995.

[LRW91℄ M. Lam, E. Rothberg, and M. Wolf. The
a
he performan
e and optimizations

of blo
ked algorithms. Fourth Int. Conf. on Ar
hite
tural Support for Program-

ming Languages and Operating Systems, April 1991.

[M
C95℄ John D. M
Calpin. Memory bandwidth and ma
hine balan
e in
urrent high

performan
e
omputers. IEEE Te
hni
al Committee on Computer Ar
hite
ture

Newsletter, De
 1995.

[MCT96℄ K.S. M
Kinley, S. Carr, and C.-W. Tseng. Improving data lo
ality with

loop transformations. ACM Trans. on Programming Languages and Systems,

18(4):424{453, 1996.

[MLG92℄ Todd C. Mowry, Moni
a S. Lam, and Anoop Gupta. Design and evaluation of

a
ompiler algorithm for prefet
hing. In Pro
eedings of the Fifth International

Conferen
e on Ar
hite
tural Support for Programming Languages and Operating

Systems, pages 62{73, O
tober 1992.

[PW93℄ William Pugh and David Wonna
ott. An exa
t method for analysis of value-

based array data dependen
es. In Pro
eedings of the 6th Annual Workshop on

Programming Languages and Compilers for Parallel Computing, volume 768 of

Le
ture Notes in Computer S
ien
e. Springer-Verlag, Berlin, August 1993. Also

available as Te
h. Report CS-TR-3196, Dept. of Computer S
ien
e, University

of Maryland, College Park.

[RMCKB97℄ Gerald Roth, John Mellor-Crummey, Ken Kennedy, and R. Gregg Bri
kner.

Compiling sten
ils in high performan
e fortran. In Pro
eedings of SC '97: High

Performan
e Networking and Computing, November 1997.

[SSW97℄ Tina Shen, Jaime Spa

o, and David Wonna
ott. High MFLOP rates for

out of
ore sten
il
al
ulations using time skewing. In SC '97 poster session,

November 1997. Available as http://www.haverford.edu/
ms
/davew/
a
he-

opt/SC97poster.ps.

[SW98℄ Tina Shen and David Wonna
ott. Code generation for mem-

ory mappings. 1998. In preparation. A preprint is available as

http://www.haverford.edu/
ms
/davew/
a
he-opt/mmap.ps, and an ear-

lier version of this work appeared in the 1998 Mid-Atlanti
 Student Workshop

on Programming Languages and Systems (MASPLAS '98).

[TGJ93℄ O. Temam, E. Granston, and W. Jalby. To
opy or not to
opy: A
ompile-time

te
hnique for assessing when data
opying should be used to eliminate
a
he

on
i
ts. In Pro
eedings of Super
omputing'93, November 1993.

[WL91℄ Mi
hael E. Wolf and Moni
a S. Lam. A data lo
ality optimizing algorithm. In

ACM SIGPLAN '91 Conferen
e on Programming Language Design and Imple-

mentation, 1991.

11

[Wol89℄ Mi
hael Wolfe. More iteration spa
e tiling. In Pro
. Super
omputing 89, pages

655{664, November 1989.

[Wol92℄ Mi
hael Edward Wolf. Improving Lo
ality and Parallelism in Nested Loops.

PhD thesis, Dept. of Computer S
ien
e, Stanford U., August 1992.

[Won95℄ David G. Wonna
ott. Constraint-Based Array Dependen
e Analysis. PhD the-

sis, Dept. of Computer S
ien
e, The University of Maryland, August 1995. Avail-

able as ftp://ftp.
s.umd.edu/pub/omega/davewThesis/davewThesis.ps.

12

