
Please do not remove this page

Time Skewing: A Value-Based Approach to
Optimizing for Memory Locality
McCalpin, John; Wonnacott, David
https://scholarship.libraries.rutgers.edu/esploro/outputs/technicalDocumentation/Time-Skewing-A-Value-Based-Approach-to/991031549998604646/fi
lesAndLinks?index=0

McCalpin, J., & Wonnacott, D. (1998). Time Skewing: A Value-Based Approach to Optimizing for Memory
Locality. Rutgers University. https://doi.org/10.7282/T3ZG6WVV
Document Version: Author's Original (AO)

Downloaded On 2024/05/03 11:16:20 -0400

This work is protected by copyright. You are free to use this resource, with proper attribution, for
research and educational purposes. Other uses, such as reproduction or publication, may require the
permission of the copyright holder.

https://scholarship.libraries.rutgers.edu/esploro/outputs/technicalDocumentation/Time-Skewing-A-Value-Based-Approach-to/991031549998604646/filesAndLinks?index=0
https://scholarship.libraries.rutgers.edu/esploro/outputs/technicalDocumentation/Time-Skewing-A-Value-Based-Approach-to/991031549998604646


Rutgers University Department of Computer Siene Tehnial Report 379

Submitted 2 Marh 1999

Time Skewing: A Value-Based Approah to

Optimizing for Memory Loality

�

John MCalpin

Silion Graphis Computer Systems

2011 N. Shoreline Blvd,

Mountain View, CA 94043.

email: malpin�sgi.om

David Wonnaott

Department of Computer Siene

Haverford College

Haverford PA 19041.

email: davew�s.haverford.edu

Revised to September 10, 1998

Abstrat

As the gap between proessor and main memory speed ontinues to

grow, higher ahe hit rates are required for eÆient proessor use. Re-

ent work on ompile-time transformations to improve loality in sienti�

progams has foused on loop fusion, tiling, and distribution; previous work

suggests that loop skewing is not useful in optimizing for loality. In this

artile, we show that the value of loop skewing may only be evident in a

ompiler that inludes transformations that have not been applied in em-

pirial studies of loality (suh as the interhange of imperfetly nested

loops). We also show how a new approah to data transformation an be

used to further redue memory traÆ for these alulations.

1 Introdution

Sine about 1990, the relative ost (in time) of main memory aesses and

oating-point arithmeti have undergone a dramati shift for miroproessor-

based omputers. One partiular metri is the time required to load a word from

a unit-stride data stream relative to the time required to perform a oating-point

operation. As shown in [MC95℄, this ratio has gone from near 1 in 1990 to at

�

This work is supported by funds from Haverford College.

1



least 20 in 1996, with an annual inrease near 70% per year averaged aross the

industry.

This inrease in the ost of memory aesses relative to oating-point arith-

meti has had di�erent impats on di�erent appliation areas, with some algo-

rithms in omputational uid dynamis and signal proessing/image analysis

showing the largest sensitivity to the ost of memory aesses.

In this artile, we disuss tehniques for improving memory loality of simple

\stenil operations", whih are prototypial for expliit algorithms in omputa-

tional uid dynamis and signal proessing/image analysis. These algorithms

iteratively apply a nearest-neighbor operator to evolve an initial ondition to a

�nal state.

Wolf and Lam showed that, for some stenil alulations, loop skewing plays

a ruial role in improving memory loality [WL91, Figures 2 and 7℄, [Wol92,

Figure 4.1℄. However, their studies of ompile-time loality optimizations on

benhmark odes [Wol92℄ suggest that loop skewing does not play a signif-

iant role in improving loality in pratie. Some reent approahes to lo-

ality optimization have overlooked loop skewing (for example, [MCT96℄ and

[RMCKB97℄), on the grounds that Wolf and Lam found it was not useful.

In Setion 2 of this artile, we give example stenil alulations that are

outside the domain of the tehniques of Wolf and Lam, and show that loop

skewing and tiling an still be used to improve loality. This leads us to on-

lude that loop skewing should not be overlooked as a useful transformation

for improving memory loality in ompilers that an handle more general loop

transformations. For our examples, loop skewing must be ombined with either

(a) interhange of imperfetly nested loops, or (b) forward substitution of an

array expression and a new form of data transformation. The latter form pro-

dues less traÆ to main memory, but at the ost of a signi�ant inrease the

omplexity of loop bounds and subsript operations. We give the details of this

ombination of iteration spae and data transformation, whih we all \time

skewing", in Setion 3. This artile also inludes a disussion of related work

(Setion 4) and onluding remarks (Setion 5).

1.1 De�nitions

For the disussion that follows, we will de�ne the mahine balane as the maxi-

mum sustainable rate of performing oating-point arithmeti (typially for data

in registers) divided by the maximum sustainable data transfer rate for unit-

stride aesses. The mahine balane will therefore be a funtion of the loation

of the data in the memory hierarhy, and we an speak of the L1 ahe mahine

balane, the L2 ahe mahine balane, the main memory mahine balane. For

distributed shared memory systems, there will be a orresponding remote mem-

ory mahine balane, and for virtual memory mahines there will be a virtual

memory mahine balane.

Corresponding to the mahine balane parameters, we an de�ne ompute

balane (or loop balane) parameters. The ompute balane parameters are

de�ned as the required number of oating-point operations divided by the re-

2



// initialize C to zero

for (int i = 0; i<N; i++)

for (int j = 0; j<N; j++)

for (int k = 0; k<N; k++)

C[i℄[k℄ += A[i℄[j℄ * B[j℄[k℄;

Figure 1: Matrix Multipliation

quired number of memory referenes to eah level in the memory hierarhy. So

we have L1 ahe ompute balane, L2 ahe ompute balane, main memory

ompute balane, et. In some ases we may with to ompare the number of

operations to the total number of memory referenes|we all this ratio simply

the ompute balane.

In general, loop nests for whih the ompute balane parameter is greater

than the mahine balane parameter of the memory ontaining the data may

be ompute-bound; ode setions for whih the ompute balane parameter is

less than the mahine balane parameter will be bandwidth-bound. When the

ompute balane is greater than the mahine balane, optimizations that redue

lateny (suh as prefething) may help to improve performane by moving some

memory aess delays to times where the proessor is busy. However, lateny

reduing optimizations annot ompensate for inadequate memory bandwidth.

The omparison of ompute and mahine balanes an be repeated at eah level

of the memory hierarhy to examine how bottleneks hange with \distane"

from the proessor.

Compute balane an vary with the number of loops onsidered; for exam-

ple, the k loop of the matrix multiply ode in Figure 1 aesses aesses 3N

memory loations and performs N multipliations and N additions, for a om-

pute balane of

2

3

. Thus, we annot only make use of CPU speed in exess of

2

3

of the bandwidth of the memory in whih these data reside at the start of

the k loop, no matter what optimizations we apply to the k loop itself. The

inner two loops have a ompute balane of approximately

1

2

(aessing N

2

+2N

memory loations during 2N

2

operations). However, the entire loop nest has a

ompute balane of

N

3

(3N

2

memory loations and N

3

operations). Thus, even

mahines with extremely high main memory balane (suh as 100) may not be

bandwidth bound during the multipliation of large arrays (suh as 300x300).

Of ourse, simply mathing ompute balane to mahine balane does not

guarantee eÆient proessor use|other fators, suh as ahe interferene,

memory lateny, or limits on ahe size, may interfere. In suh ases, it may

be posible to ounter these fators with ompile-time optimizations: Copying

an be used to redue ahe interferene [LRW91, TGJ93℄, prefething an re-

due stalls due to lateny [MLG92℄, and tiling [Wol89, WL91℄ an improve the

performane of this loop nest when the three arrays will not �t entirely in ahe.

However, a mismath between ompute balane and mahine balane does

identify ases in whih bandwidth plaes limits on loality, no matter what we

3



for (int t = 0; t<=T; t++)

for (int i = 0; i<=N; i++)

A[i+1℄ = 1.0/3 * (A[i℄ + A[i+1℄ + A[i+2℄)

Figure 2: Three Point \In-Plae" Stenil (from [WL91, Wol92℄)

for (int t = 0; t<T; t++)

{

for (int i = 0; i<N; i++)

old[i℄ = ur[i℄;

for (int i = 1; i<N-1; i++)

ur[i℄ = 1.0/3 * (old[i-1℄ + old[i℄ + old[i+1℄);

}

Figure 3: Three Point Stenil

do about interferene or lateny. If we a loop nest performs N

2

alulations on

N

2

values, the only way to make this loop nest run faster than N

2

aesses to

main memory is to ensure that the data are in ahe before the nest starts{no

amount of optimization of the loop nest itself an hange this.

In this disussion, we have ignored the issue of whether or not two distint

referenes might refer to di�erent addresses that share a same ahe line. The

alulations we onsider traverse memory with unit stride; in suh ases, the

sharing of ahe lines do not a�et the question of whether or not the memory

system has enough bandwidth to keep up with the CPU.

2 Stenils, Skewing, and Loality

The ode shown in Figure 2, and a variant of this ode with three loops, were

used by Wolf and Lam to demonstrate their approah to optimizing data loality

[WL91, Wol92℄. Note that these odes have ompute balanes of O(T ), so for

large values of T we may be able to ahieve high degrees of loality without

looking outside of this nest. Wolf and Lam show that high degrees of loality an

be produed by �rst skewing the inner loop(s) to make the nest fully permutable,

and then applying tiling.

The tehniques of Wolf and Lam require perfetly nested loops, or loops

that an be onverted to a perfet nest using the tehniques given in Setion

2.7 of [Wol92℄. The stenils shown in Figures 3 and 4 lie outside the domain of

these tehniques. However, if we align [ACK87℄ and fuse the two nests in the

t loop, we an then skew and tile the loops and adjust the ompute balane as

we would for Figure 2.

This ombination of unimodular and non-unimodular transformations an

4



for (int t = 0; t<T; t++)

{

for (int i = 0; i<ROWS; i++)

for (int j = 0; j<COLS; j++)

old[i℄[j℄ = ur[i℄[j℄;

for (int i = 1; i<ROWS-1; i++)

for (int j = 1; j<COLS-1; j++)

ur[i℄[j℄ = 1.0/8 *

(old[i-1℄[j℄ +

old[i℄[j-1℄ + 4*old[i ℄[j℄ + old[i℄[j+1℄ +

old[i+1℄[j℄);

}

Figure 4: Five Point Stenil

be desribed onsiely in the framework of [KP94℄. In this framework, eah

iteration of eah statement is identi�ed with a unique tuple of integers. These

integers may orrespond to the loop index value of a surrounding loop, or they

may indiate whih of several statements is being performed. For example, if

the loop nest in Figure 4 were the seond statement in a funtion, we ould

identify iteration t = 4; i = 7; j = 6 of the assignment to old with the tuple

[2; 4; 1; 7; 1; 6; 1℄ (i.e. statement 2 of the funtion, t = 4, statement 1 in the t

loop, i = 7, statement 1 in the i loop, j = 6, statement 1 in the j loop), or

iteration t = 5; i = 4; j = 8 of the assignment to ur with [2; 5; 2; 4; 1; 8; 1℄.

The lexiographial ordering of these tuples de�nes the exeution ordering of

the statements and iterations, so we an desribe a reordering transformation

as a remapping of the tuples assigned to the iterations. Using this system, we

desribe aforementioned transformation of Figure 4 as:

f [ 2; t; 1; i; 1; j; 1 ℄!

[ 2; t=B; 1; (2t+ i� 1)=B; 1; j + 2t� 1; 1; (2t+ i� 1)%B; 1; t%B; 1 ℄ g

f [ 2; t; 2; i; 1; j; 1 ℄!

[ 2; t=B; 1; (2t+ i)=B; 1; j + 2t; 1; (2t+ i)%B; 1; t%B; 2 ℄ g

where B is the bloksize, whih must be known at ompile time.

This transformation produes bloks that perform O(COLS � B � B) op-

erations while aessing O(COLS � B) memory elements. Furthermore, only

O(B �B) values are live within the blok at any time. Thus, in the absene of

interferene, we should ahieve main-memory ompute balane of O(B), given

a ahe of size O(B �B). We will return to the subjet of interferene in Setion

4.

Note that it is not possible to ahieve a main-memory ompute balane

above 3 for Figure 4 without exploiting loality between the two i/j nests

(unless both array �t entirely in ahe). Tiling the i and j loops that surround

5



the alulation may be neessary to produe this balane, if the ahe annot

simultaneously hold two rows of both arrays.

3 Time Skewing

It is possible to redue the number of main memory writes of the previous

stenils by a further fator of two. Following the appliation of our algorithm

to the ode in Figure 4 is somewhat diÆult. We therefore use the simpler one-

dimensional stenil alulation shown in Figure 3 to illustrate our approah, and

then give a general formulation.

We start by performing dataow analysis of the ur and old arrays [Fea91,

PW93, Won95℄. The result of this analysis is a graph of the ow of values

through the iteration spae, whih we all the iteration spae dataow graph.

Eah node represents a value produed by some iteration of some statement

in the loop, and has inoming edges from the other nodes whose values that

are used in the alulations. This graph is represented impliitly, and may

be parameterized by the values that desribe this spae or the ow of values.

Figure 5 shows the dataow values for Figure 3, assuming N=7 and T=3 (ignore

the shading for now). Note that we an perform this analysis without knowing

N and T, but have stated them in this ase to simplify the piture.

This representation an also be viewed as the result of array expansion (on-

verting eah de�nition of an array element A[X℄ at time t into a de�nition of

A[t℄[X℄, and adjusting array uses to math) and removal of temporary arrays

(in this example, sine old is not used after the loop, and old[t℄[i℄ is de�ned

as ur[t-1℄[i℄, we an replae the uses of old with uses of ur), as shown

Figure 6. We use this notation in the following disussion (and in Figure 5),

even though we do not atually store values in this way.

Note that only the values of ur[T℄[*℄ are needed when the loop is over. All

other values an be plaed temporarily in ahe, and then overwritten without

ever being stored in main memory, as long as we �nish using eah value before

we overwrite it. In this example, we an traverse the dataow graph from lower

left to the upper right, keeping a band of values of thikness three in the ahe

(shown in light gray on Figure 5), and storing eah �nal value in main memory

as we generate it (dark gray). This traversal allows us to read one new value

into ahe (in this ase, ur[0℄[6℄) and ombine it with other \intermediate"

values already in the ahe (in this ase, ur[0℄[5℄, ur[0℄[4℄, ur[1℄[3℄,

and ur[2℄[2℄) to produe a sequene of new intermediate and �nal values

(ur[1℄[5℄, ur[2℄[4℄, and ur[3℄[3℄), and then release some intermediate

values that are no longer needed (ur[0℄[3℄, ur[1℄[2℄, and ur[2℄[1℄).

This traversal lets us produe T new values while performing only one read

from, and one write to, main memory (assuming we an keep the entire gray

band in ahe). If we annot keep 3T elements in ahe at one, we blok the T

loop (again, let B be the blok size).

This reordering of iterations is idential to that disussed in the previous

setion, exept that we skew by t rather than 2t. It produes ode with the

6



cur[0][3]

cur[0][2]

cur[0][1]

cur[1][2]

cur[1][1]

cur[0][0] cur[1][0]

cur[1][3]

cur[2][2]

cur[2][1]

cur[2][0]

cur[2][3]

i

t

cur[0][6]

cur[0][5]

cur[0][4]

cur[1][5]

cur[1][4]

cur[1][6]

cur[2][5]

cur[2][4]

cur[2][6]

cur[3][2]

cur[3][1]

cur[3][0]

cur[3][3]

cur[3][5]

cur[3][4]

cur[3][6]

Figure 5: Dataow Graph of Three Point Average Calulation

7



for (int t = 0; t<T; t++)

{

// ompute new ur[t+1℄ values from the values in ur[t℄

ur[t+1℄[0℄ = ur[t℄[0℄;

for (int i = 1; i<N-1; i++)

{

ur[t+1℄[i℄ = 1.0/3 *

(ur[t℄[i-1℄ + ur[t℄[i℄ + ur[t℄[i+1℄);

}

ur[t+1℄[N-1℄ = ur[t℄[N-1℄;

}

Figure 6: Three Point Average Calulation in Single Assignment Form

same ratio of operations to values that are live aross blok boundaries. The

only question that remains is where to store the values that are not live: Figure

5 suggests that every value is stored in a new loation|obviously this will not

improve memory loality. Instead, we reate an array (named \ahe") of size

3 by B to hold all values in the grey bar.

If all values in the grey bar are stored in the \ahe" array, then eah blok

reads N values from main memory, and writes N values into memory. The

other N(B � 2) values exist only temporarily in the ahe array. In ontrast, if

we transform the iterations without remapping the storage, we end up writing

new values into both the ur and old arrays. The values stored in one of these

arrays are dead, but all 2N values will still be written into main memory (in the

absene of some mehanism to inform the ahe hardware about dead values).

Thus, our remapping of storage has redued the number of writes to memory

by a fator of two.

When transforming stenils of arrays of higher dimension, we must blok all

but the innermost loop (otherwise the tile size grows with N rather than B).

When a stenil inludes values that are more than one element away, we skew

by larger fators of t. In general, for a nest with loops i

1

:::i

n

inside a time loop

t, with dependene distanes Æ

1

:::Æ

n

, we perform the following transformation:

f [t; i

1

; i

2

:::i

n

℄! [t=B; (i

1

+ Æ

1

� t)=B; (i

2

+ Æ

2

� t)=B; :::; (i

n�1

+ Æ

n�1

� t)=B;

i

n

+ Æ

n

� t;

(i

n�1

+ Æ

n�1

� t)%B; (i

2

+ Æ

2

� t)%B; :::; (i

1

+ Æ

1

� t)%B; t%B℄ g

(in the interest of simpliity, we have omitted the onstant levels of the transfor-

mation, as they are unneessary when only one statement is being transformed).

We an desribe the mapping of values to memory loations with a similar

notation: we desribe a mapping from the statement iterations to the address

expressions for eah array. For our transformation, values produed at the end

of a blok of the time loop are stored in the original array (ur); values that

are not live past the end of the blok are stored in ahe. We must also use

8



additional arrays to store the values produed at the ends of other bloked loops

(alled tide arrays here). We do O(B) iterations before writing out a value to

either the ur array or one of the tide arrays, so the introdution of these

new arrays does not have a signi�ant e�et on the balane of the resulting

omputation. The total data mapping, in the the notation used in [SW98℄, is

[tb; xb

1

; :::xb

n�1

; s

n

; xx

1

; :::xx

n�1

; tt℄!

ur[i

1

; i

2

:::i

n

℄;when tt = B � 1:

tide

j

[s

n

; xx

1

; :::xx

n�1

; tt℄;when xx

j

+ Æ

j

+ 1 � B

^(6 9k > j s:t: xx

k

+ Æ

k

+ 1 � B) ^ tt 6=B�1;

ahe[s

n

mod(Æ

n

+ 2); xx

1

; :::xx

n�1

; tt℄; otherwise:

The algorithms given in [KPR95℄ and [SW98℄ an be used to generate ode

for the iteration spaes and array subsript expressions, given the above de-

sriptions of the iteration spae transformations and memory mappings. Note

that [SW98℄ is the only data transformation framework that an represent this

transformation: other frameworks apply transformations to all uses of a given

array (rather than a single write statement), and require a single transformation

(rather than a set of transformations, produing referenes to di�erent arrays,

that together over all iterations of the statement being transformed).

4 Related Work

Current tehniques for improving loality [GJ88, WL91, MCT96℄ are based on

the searh for groups of referenes that may refer to the same ahe line, assum-

ing that eah value is stored in the address used in the original (unoptimized)

program. That is, these tehniques searh for referenes that referring to the

same array element, or to adjaent array elements (whih may share a ahe

line), possibly in di�erent iterations of a loop. These tehniques then reorder

alulations so that those referenes that share ahe lines our together. Ref-

erenes to di�erent arrays are often moved apart where possible, to redue ahe

interferene. Reordering generally is aomplished by ombining loop distribu-

tion (to separate unrelated alulations) and loop tiling and interhange (to

bring together aesses to the same ahe line). [WL91℄ also apply loop skewing

to enable tiling and interhange.

These tehniques an be applied to a wide range of alulations, while we

have only studied stenils. However, our tehnique an be applied to stenils

that ould not be optimized by previous tehniques: they lie outside the domain

of the algorithm of Wolf and Lam, and more reent work has overlooked loop

skewing. Our full \time skewing" algorithm produes a smaller amount of main

memory traÆ than a mere reordering of the iterations without remapping of

the arrays used, though at a ost of signi�ant additional ode omplexity. This

ost may not be worth the savings in memory traÆ unless the proessor is

dramatially faster than memory. [SSW97℄ demonstrated that time skewing

an be used to greatly inrease the speed of alulations involving arrays that

are too large to �t in main memory.

9



Other tehniques for improving loality may be onfounded by ahe interfer-

ene, espeially when the the size of a row of the array is a multiple of the ahe

line size. This e�et an be redued by adjusting the array dimensions, or opy-

ing eah tile into temporary storage before working with it [LRW91, TGJ93℄.

With our approah, ahe interferene will only arise from onits between our

small \ahe" array and the arrays we use to store values at the edges of bloks

of iterations. Sine the alloation of these arrays is ontrolled by our algorithm,

we may be able to eliminate interferene by reduing the size of our ahe array,

and alloating the other arrays so that the elements we use will �t in the unused

ahe lines. Even without suh aggressive tehniques, our algorithm should not

ause muh ahe interferene, sine most of the work is done entirely within the

\ahe" array, whih is by de�nition small enough to �t entirely within ahe.

Work on tolerating memory lateny, suh as that by [MLG92℄, omplements

work on bandwidth issues. Optimizations to hide lateny annot ompensate for

inadequate memory bandwidth, and bandwidth optimizations do not eliminate

problems of lateny. However, we see no reason why the two approahes annot

be used together.

5 Conlusion

We have demonstrated that the value of loop skewing in improving memory

loality may only be evident in a ompiler that inludes transformations that

have not been applied in studies of loality. Spei�ally, some stenils require

that skewing be ombined with either (a) the interhange of imperfetly nested

loops, or (b) forward substitution of array expressions and a new form of data

transformation. In other ases, it may be neessary to skew and blok a nest

with in whih the outer loop is a while rather than a for, though we have not

addressed this ase here. As we noted at the end of Setion 2, bandwidth plaes

an upper limit on the memory loality that an be ahieved without skewing

with respet to the outer \time" loop. Thus, we onlude that loop skewing

should not be overlooked in the searh for transformations that improve memory

loality.

We have also shown that data transformation, when used in ombination

with iteration spae transformation, may be useful as a tool for further reduing

memory traÆ in stenil alulations. We formulated our approah by starting

with a desription of the data ow in the alulation (a fundamental harater-

isti of the algorithm), rather than by searhing for loality based on the arrays

used by the programmer (an artifat of the expression of the algorithm). While

both approahes produe the same iteration spae transformation, our approah

does provide insight into what values atually need to be written out to main

memory.

10



Referenes

[ACK87℄ R. Allen, D. Callahan, and K. Kennedy. Automati deomposition of sienti�

programs for parallel exeution. In Conferene Reord of the Fourteenth ACM

Symposium on Priniples of Programming Languages, pages 63{76, January

1987.

[Fea91℄ Paul Feautrier. Dataow analysis of salar and array referenes. International

Journal of Parallel Programming, 20(1):23{53, February 1991.

[GJ88℄ D. Gannon and W. Jalby. Strategies for ahe and loal memory management by

global program transformation. Journal of Parallel and Distributed Computing,

pages 587{616, 1988.

[KP94℄ Wayne Kelly and William Pugh. Determining shedules based on performane

estimation. Parallel Proessing Letters, 4(3):205{219, September 1994.

[KPR95℄ Wayne Kelly, William Pugh, and Evan Rosser. Code generation for multiple

mappings. In The 5th Symposium on the Frontiers of Massively Parallel Com-

putation, pages 332{341, MLean, Virginia, February 1995.

[LRW91℄ M. Lam, E. Rothberg, and M. Wolf. The ahe performane and optimizations

of bloked algorithms. Fourth Int. Conf. on Arhitetural Support for Program-

ming Languages and Operating Systems, April 1991.

[MC95℄ John D. MCalpin. Memory bandwidth and mahine balane in urrent high

performane omputers. IEEE Tehnial Committee on Computer Arhiteture

Newsletter, De 1995.

[MCT96℄ K.S. MKinley, S. Carr, and C.-W. Tseng. Improving data loality with

loop transformations. ACM Trans. on Programming Languages and Systems,

18(4):424{453, 1996.

[MLG92℄ Todd C. Mowry, Monia S. Lam, and Anoop Gupta. Design and evaluation of

a ompiler algorithm for prefething. In Proeedings of the Fifth International

Conferene on Arhitetural Support for Programming Languages and Operating

Systems, pages 62{73, Otober 1992.

[PW93℄ William Pugh and David Wonnaott. An exat method for analysis of value-

based array data dependenes. In Proeedings of the 6th Annual Workshop on

Programming Languages and Compilers for Parallel Computing, volume 768 of

Leture Notes in Computer Siene. Springer-Verlag, Berlin, August 1993. Also

available as Teh. Report CS-TR-3196, Dept. of Computer Siene, University

of Maryland, College Park.

[RMCKB97℄ Gerald Roth, John Mellor-Crummey, Ken Kennedy, and R. Gregg Brikner.

Compiling stenils in high performane fortran. In Proeedings of SC '97: High

Performane Networking and Computing, November 1997.

[SSW97℄ Tina Shen, Jaime Spao, and David Wonnaott. High MFLOP rates for

out of ore stenil alulations using time skewing. In SC '97 poster session,

November 1997. Available as http://www.haverford.edu/ms/davew/ahe-

opt/SC97poster.ps.

[SW98℄ Tina Shen and David Wonnaott. Code generation for mem-

ory mappings. 1998. In preparation. A preprint is available as

http://www.haverford.edu/ms/davew/ahe-opt/mmap.ps, and an ear-

lier version of this work appeared in the 1998 Mid-Atlanti Student Workshop

on Programming Languages and Systems (MASPLAS '98).

[TGJ93℄ O. Temam, E. Granston, and W. Jalby. To opy or not to opy: A ompile-time

tehnique for assessing when data opying should be used to eliminate ahe

onits. In Proeedings of Superomputing'93, November 1993.

[WL91℄ Mihael E. Wolf and Monia S. Lam. A data loality optimizing algorithm. In

ACM SIGPLAN '91 Conferene on Programming Language Design and Imple-

mentation, 1991.

11



[Wol89℄ Mihael Wolfe. More iteration spae tiling. In Pro. Superomputing 89, pages

655{664, November 1989.

[Wol92℄ Mihael Edward Wolf. Improving Loality and Parallelism in Nested Loops.

PhD thesis, Dept. of Computer Siene, Stanford U., August 1992.

[Won95℄ David G. Wonnaott. Constraint-Based Array Dependene Analysis. PhD the-

sis, Dept. of Computer Siene, The University of Maryland, August 1995. Avail-

able as ftp://ftp.s.umd.edu/pub/omega/davewThesis/davewThesis.ps.

12


