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Abstract

As the gap between processor and main memory speed continues to
grow, higher cache hit rates are required for efficient processor use. Re-
cent work on compile-time transformations to improve locality in scientific
progams has focused on loop fusion, tiling, and distribution; previous work
suggests that loop skewing is not useful in optimizing for locality. In this
article, we show that the value of loop skewing may only be evident in a
compiler that includes transformations that have not been applied in em-
pirical studies of locality (such as the interchange of imperfectly nested
loops). We also show how a new approach to data transformation can be
used to further reduce memory traffic for these calculations.

1 Introduction

Since about 1990, the relative cost (in time) of main memory accesses and
floating-point arithmetic have undergone a dramatic shift for microprocessor-
based computers. One particular metric is the time required to load a word from
a unit-stride data stream relative to the time required to perform a floating-point
operation. As shown in [McC95], this ratio has gone from near 1 in 1990 to at
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least 20 in 1996, with an annual increase near 70% per year averaged across the
industry.

This increase in the cost of memory accesses relative to floating-point arith-
metic has had different impacts on different application areas, with some algo-
rithms in computational fluid dynamics and signal processing/image analysis
showing the largest sensitivity to the cost of memory accesses.

In this article, we discuss techniques for improving memory locality of simple
“stencil operations”, which are prototypical for explicit algorithms in computa-
tional fluid dynamics and signal processing/image analysis. These algorithms
iteratively apply a nearest-neighbor operator to evolve an initial condition to a
final state.

Wolf and Lam showed that, for some stencil calculations, loop skewing plays
a crucial role in improving memory locality [WL91, Figures 2 and 7], [Wol92,
Figure 4.1]. However, their studies of compile-time locality optimizations on
benchmark codes [Wol92] suggest that loop skewing does not play a signif-
icant role in improving locality in practice. Some recent approaches to lo-
cality optimization have overlooked loop skewing (for example, [MCT96] and
[RMCKB97]), on the grounds that Wolf and Lam found it was not useful.

In Section 2 of this article, we give example stencil calculations that are
outside the domain of the techniques of Wolf and Lam, and show that loop
skewing and tiling can still be used to improve locality. This leads us to con-
clude that loop skewing should not be overlooked as a useful transformation
for improving memory locality in compilers that can handle more general loop
transformations. For our examples, loop skewing must be combined with either
(a) interchange of imperfectly nested loops, or (b) forward substitution of an
array expression and a new form of data transformation. The latter form pro-
duces less traffic to main memory, but at the cost of a significant increase the
complexity of loop bounds and subscript operations. We give the details of this
combination of iteration space and data transformation, which we call “time
skewing”, in Section 3. This article also includes a discussion of related work
(Section 4) and concluding remarks (Section 5).

1.1 Definitions

For the discussion that follows, we will define the machine balance as the maxi-
mum sustainable rate of performing floating-point arithmetic (typically for data
in registers) divided by the maximum sustainable data transfer rate for unit-
stride accesses. The machine balance will therefore be a function of the location
of the data in the memory hierarchy, and we can speak of the L1 cache machine
balance, the L2 cache machine balance, the main memory machine balance. For
distributed shared memory systems, there will be a corresponding remote mem-
ory machine balance, and for virtual memory machines there will be a virtual
memory machine balance.

Corresponding to the machine balance parameters, we can define compute
balance (or loop balance) parameters. The compute balance parameters are
defined as the required number of floating-point operations divided by the re-



// initialize C to zero
for (int i = 0; i<N; i++)
for (int j = 0; j<N; j++)
for (int k = 0; k<N; k++)
C[il[k] += A[i]1[j1 * B[j1[k];

Figure 1: Matrix Multiplication

quired number of memory references to each level in the memory hierarchy. So
we have L1 cache compute balance, L2 cache compute balance, main memory
compute balance, etc. In some cases we may with to compare the number of
operations to the total number of memory references—we call this ratio simply
the compute balance.

In general, loop nests for which the compute balance parameter is greater
than the machine balance parameter of the memory containing the data may
be compute-bound; code sections for which the compute balance parameter is
less than the machine balance parameter will be bandwidth-bound. When the
compute balance is greater than the machine balance, optimizations that reduce
latency (such as prefetching) may help to improve performance by moving some
memory access delays to times where the processor is busy. However, latency
reducing optimizations cannot compensate for inadequate memory bandwidth.
The comparison of compute and machine balances can be repeated at each level
of the memory hierarchy to examine how bottlenecks change with “distance”
from the processor.

Compute balance can vary with the number of loops considered; for exam-
ple, the k loop of the matrix multiply code in Figure 1 accesses accesses 3N
memory locations and performs N multiplications and N additions, for a com-
pute balance of % Thus, we cannot only make use of CPU speed in excess of
% of the bandwidth of the memory in which these data reside at the start of
the k loop, no matter what optimizations we apply to the k loop itself. The
inner two loops have a compute balance of approximately % (accessing N2 + 2N
memory locations during 2N? operations). However, the entire loop nest has a
compute balance of & (3N? memory locations and N* operations). Thus, even
machines with extremely high main memory balance (such as 100) may not be
bandwidth bound during the multiplication of large arrays (such as 300x300).

Of course, simply matching compute balance to machine balance does not
guarantee efficient processor use—other factors, such as cache interference,
memory latency, or limits on cache size, may interfere. In such cases, it may
be posible to counter these factors with compile-time optimizations: Copying
can be used to reduce cache interference [LRW91, TGJ93], prefetching can re-
duce stalls due to latency [MLG92], and tiling [Wol89, WL91] can improve the
performance of this loop nest when the three arrays will not fit entirely in cache.

However, a mismatch between compute balance and machine balance does
identify cases in which bandwidth places limits on locality, no matter what we



for (int t
for (int
Ali+1]

0; t<=T; t++)
= 0; i<=N; i++)
1.0/3 * (A[i] + A[i+1] + A[i+2])

=

Figure 2: Three Point “In-Place” Stencil (from [WL91, Wol92])

for (int t = 0; t<T; t++)
{
for (int i = 0; i<N; i++)
old[i] = cur[il;

for (int 1 = 1; i<N-1; i++)
cur[i] 1.0/3 * (old[i-1] + old[i] + old[i+1]);

Figure 3: Three Point Stencil

do about interference or latency. If we a loop nest performs N? calculations on
N? values, the only way to make this loop nest run faster than N? accesses to
main memory is to ensure that the data are in cache before the nest starts—no
amount of optimization of the loop nest itself can change this.

In this discussion, we have ignored the issue of whether or not two distinct
references might refer to different addresses that share a same cache line. The
calculations we consider traverse memory with unit stride; in such cases, the
sharing of cache lines do not affect the question of whether or not the memory
system has enough bandwidth to keep up with the CPU.

2 Stencils, Skewing, and Locality

The code shown in Figure 2, and a variant of this code with three loops, were
used by Wolf and Lam to demonstrate their approach to optimizing data locality
[WL91, Wol92]. Note that these codes have compute balances of O(T'), so for
large values of T' we may be able to achieve high degrees of locality without
looking outside of this nest. Wolf and Lam show that high degrees of locality can
be produced by first skewing the inner loop(s) to make the nest fully permutable,
and then applying tiling.

The techniques of Wolf and Lam require perfectly nested loops, or loops
that can be converted to a perfect nest using the techniques given in Section
2.7 of [Wol92]. The stencils shown in Figures 3 and 4 lie outside the domain of
these techniques. However, if we align [ACK87] and fuse the two nests in the
t loop, we can then skew and tile the loops and adjust the compute balance as
we would for Figure 2.

This combination of unimodular and non-unimodular transformations can



for (int t = 0; t<T; t++)

{
for (int i = 0; i<ROWS; i++)
for (int j = 0; j<COLS; j++)
01d[i]1[j] = cur[il[j];
for (int i = 1; i<ROWS-1; i++)
for (int j = 1; j<COLS-1; j++)
cur[i][j] = 1.0/8 *
(old[i-1]1[j] +
old[i][j-1] + 4*old[i 1[j] + old[i][j+1] +
old[i+1]1[j1);
}

Figure 4: Five Point Stencil

be described consicely in the framework of [KP94]. In this framework, each
iteration of each statement is identified with a unique tuple of integers. These
integers may correspond to the loop index value of a surrounding loop, or they
may indicate which of several statements is being performed. For example, if
the loop nest in Figure 4 were the second statement in a function, we could
identify iteration t = 4,7 = 7,7 = 6 of the assignment to old with the tuple
[2,4,1,7,1,6,1] (i.e. statement 2 of the function, ¢ = 4, statement 1 in the t
loop, i = 7, statement 1 in the i loop, j = 6, statement 1 in the j loop), or
iteration t = 5,i = 4,5 = 8 of the assignment to cur with [2,5,2,4,1,8, 1].
The lexicographical ordering of these tuples defines the execution ordering of
the statements and iterations, so we can describe a reordering transformation
as a remapping of the tuples assigned to the iterations. Using this system, we
describe aforementioned transformation of Figure 4 as:

7t717i717j7]‘ ] _>

t/B,1,(2t+i—1)/B,1,j+2t —1,1,(2t +i — )%B,1,t%B,1] }
4,2,0,1,5,1] >

t/B,1,(2t+14)/B,1,j +2t,1,(2t +i)%B,1,t%B,2] }

where B is the blocksize, which must be known at compile time.

This transformation produces blocks that perform O(COLS x B x B) op-
erations while accessing O(COLS * B) memory elements. Furthermore, only
O(B * B) values are live within the block at any time. Thus, in the absence of
interference, we should achieve main-memory compute balance of O(B), given
a cache of size O(B * B). We will return to the subject of interference in Section
4.

Note that it is not possible to achieve a main-memory compute balance
above 3 for Figure 4 without exploiting locality between the two i/j nests
(unless both array fit entirely in cache). Tiling the i and j loops that surround



the calculation may be necessary to produce this balance, if the cache cannot
simultaneously hold two rows of both arrays.

3 Time Skewing

It is possible to reduce the number of main memory writes of the previous
stencils by a further factor of two. Following the application of our algorithm
to the code in Figure 4 is somewhat difficult. We therefore use the simpler one-
dimensional stencil calculation shown in Figure 3 to illustrate our approach, and
then give a general formulation.

We start by performing dataflow analysis of the cur and old arrays [Fea91,
PW93, Won95]. The result of this analysis is a graph of the flow of values
through the iteration space, which we call the iteration space dataflow graph.
Each node represents a value produced by some iteration of some statement
in the loop, and has incoming edges from the other nodes whose values that
are used in the calculations. This graph is represented implicitly, and may
be parameterized by the values that describe this space or the flow of values.
Figure 5 shows the dataflow values for Figure 3, assuming N=7 and T=3 (ignore
the shading for now). Note that we can perform this analysis without knowing
N and T, but have stated them in this case to simplify the picture.

This representation can also be viewed as the result of array expansion (con-
verting each definition of an array element A[X] at time t into a definition of
A[t]1[X], and adjusting array uses to match) and removal of temporary arrays
(in this example, since old is not used after the loop, and o1d[t] [i] is defined
as cur[t-11[i], we can replace the uses of old with uses of cur), as shown
Figure 6. We use this notation in the following discussion (and in Figure 5),
even though we do not actually store values in this way.

Note that only the values of cur [T] [*] are needed when the loop is over. All
other values can be placed temporarily in cache, and then overwritten without
ever being stored in main memory, as long as we finish using each value before
we overwrite it. In this example, we can traverse the dataflow graph from lower
left to the upper right, keeping a band of values of thickness three in the cache
(shown in light gray on Figure 5), and storing each final value in main memory
as we generate it (dark gray). This traversal allows us to read one new value
into cache (in this case, cur [0] [6]) and combine it with other “intermediate”
values already in the cache (in this case, cur[0] [5], cur[0][4], cur[1] [3],
and cur[2][2]) to produce a sequence of new intermediate and final values
(cur[1]1[5], cur([2][4], and cur[3][3]), and then release some intermediate
values that are no longer needed (cur[0] [3], cur[1]1[2], and cur[2] [1]).

This traversal lets us produce T new values while performing only one read
from, and one write to, main memory (assuming we can keep the entire gray
band in cache). If we cannot keep 3T elements in cache at once, we block the T
loop (again, let B be the block size).

This reordering of iterations is identical to that discussed in the previous
section, except that we skew by t rather than 2t. It produces code with the



Figure 5: Dataflow Graph of Three Point Average Calculation



for (int t = 0; t<T; t++)
{

// compute new cur[t+1] values from the values in cur[t]
cur[t+1]1[0] = curl[t][0];
for (int i = 1; i<N-1; i++)

{

cur[t+1][i] = 1.0/3 *
(cur[t][i-1] + cur[t]l[i] + curl[t][i+1]);

}

cur[t+1]1[N-1] = cur[t][N-1];

Figure 6: Three Point Average Calculation in Single Assignment Form

same ratio of operations to values that are live across block boundaries. The
only question that remains is where to store the values that are not live: Figure
5 suggests that every value is stored in a new location—obviously this will not
improve memory locality. Instead, we create an array (named “cache”) of size
3 by B to hold all values in the grey bar.

If all values in the grey bar are stored in the “cache” array, then each block
reads N values from main memory, and writes N values into memory. The
other N (B — 2) values exist only temporarily in the cache array. In contrast, if
we transform the iterations without remapping the storage, we end up writing
new values into both the cur and old arrays. The values stored in one of these
arrays are dead, but all 2N values will still be written into main memory (in the
absence of some mechanism to inform the cache hardware about dead values).
Thus, our remapping of storage has reduced the number of writes to memory
by a factor of two.

When transforming stencils of arrays of higher dimension, we must block all
but the innermost loop (otherwise the tile size grows with N rather than B).
When a stencil includes values that are more than one element away, we skew
by larger factors of t. In general, for a nest with loops 4;...i,, inside a time loop
t, with dependence distances d;...0,,, we perform the following transformation:

{ [t,41,09...in] = [t/B, (i1 + 01 %)/ B, (iz + 62 % t) /B, ..., (in—1 + 6,1 * t)/ B,
in + 0p *t,
(in—1 + 0p—1 x)%B, (ix + 62 x )% B, ..., (i1 + 61 xt)%B,t%B] }

(in the interest of simplicity, we have omitted the constant levels of the transfor-
mation, as they are unnecessary when only one statement is being transformed).

We can describe the mapping of values to memory locations with a similar
notation: we describe a mapping from the statement iterations to the address
expressions for each array. For our transformation, values produced at the end
of a block of the time loop are stored in the original array (cur); values that
are not live past the end of the block are stored in cache. We must also use



additional arrays to store the values produced at the ends of other blocked loops
(called tide arrays here). We do O(B) iterations before writing out a value to
either the cur array or one of the tide arrays, so the introduction of these
new arrays does not have a significant effect on the balance of the resulting
computation. The total data mapping, in the the notation used in [SW98], is

[tb, xb1, ...xbp—1, Sp, TT1, ... BTp_1, tE] —
curfiy,iz...in), when tt = B — 1.
tidej[sp, x21,...02,_1,tt],when zx; +9; +1 > B
AN Bk > j st xx+ 0 +1>B)Att#B—1,
cache[s,,mod(6,, + 2),zz1,...xT,_1, L], otherwise.

The algorithms given in [KPR95] and [SW98] can be used to generate code
for the iteration spaces and array subscript expressions, given the above de-
scriptions of the iteration space transformations and memory mappings. Note
that [SW98] is the only data transformation framework that can represent this
transformation: other frameworks apply transformations to all uses of a given
array (rather than a single write statement), and require a single transformation
(rather than a set of transformations, producing references to different arrays,
that together cover all iterations of the statement being transformed).

4 Related Work

Current techniques for improving locality [GJ88, WL91, MCT96] are based on
the search for groups of references that may refer to the same cache line, assum-
ing that each value is stored in the address used in the original (unoptimized)
program. That is, these techniques search for references that referring to the
same array element, or to adjacent array elements (which may share a cache
line), possibly in different iterations of a loop. These techniques then reorder
calculations so that those references that share cache lines occur together. Ref-
erences to different arrays are often moved apart where possible, to reduce cache
interference. Reordering generally is accomplished by combining loop distribu-
tion (to separate unrelated calculations) and loop tiling and interchange (to
bring together accesses to the same cache line). [WL91] also apply loop skewing
to enable tiling and interchange.

These techniques can be applied to a wide range of calculations, while we
have only studied stencils. However, our technique can be applied to stencils
that could not be optimized by previous techniques: they lie outside the domain
of the algorithm of Wolf and Lam, and more recent work has overlooked loop
skewing. Our full “time skewing” algorithm produces a smaller amount of main
memory traffic than a mere reordering of the iterations without remapping of
the arrays used, though at a cost of significant additional code complexity. This
cost may not be worth the savings in memory traffic unless the processor is
dramatically faster than memory. [SSW97] demonstrated that time skewing
can be used to greatly increase the speed of calculations involving arrays that
are too large to fit in main memory.



Other techniques for improving locality may be confounded by cache interfer-
ence, especially when the the size of a row of the array is a multiple of the cache
line size. This effect can be reduced by adjusting the array dimensions, or copy-
ing each tile into temporary storage before working with it [LRW91, TGJ93].
With our approach, cache interference will only arise from conflicts between our
small “cache” array and the arrays we use to store values at the edges of blocks
of iterations. Since the allocation of these arrays is controlled by our algorithm,
we may be able to eliminate interference by reducing the size of our cache array,
and allocating the other arrays so that the elements we use will fit in the unused
cache lines. Even without such aggressive techniques, our algorithm should not
cause much cache interference, since most of the work is done entirely within the
“cache” array, which is by definition small enough to fit entirely within cache.

Work on tolerating memory latency, such as that by [MLG92], complements
work on bandwidth issues. Optimizations to hide latency cannot compensate for
inadequate memory bandwidth, and bandwidth optimizations do not eliminate
problems of latency. However, we see no reason why the two approaches cannot
be used together.

5 Conclusion

We have demonstrated that the value of loop skewing in improving memory
locality may only be evident in a compiler that includes transformations that
have not been applied in studies of locality. Specifically, some stencils require
that skewing be combined with either (a) the interchange of imperfectly nested
loops, or (b) forward substitution of array expressions and a new form of data
transformation. In other cases, it may be necessary to skew and block a nest
with in which the outer loop is a while rather than a for, though we have not
addressed this case here. As we noted at the end of Section 2, bandwidth places
an upper limit on the memory locality that can be achieved without skewing
with respect to the outer “time” loop. Thus, we conclude that loop skewing
should not be overlooked in the search for transformations that improve memory
locality.

We have also shown that data transformation, when used in combination
with iteration space transformation, may be useful as a tool for further reducing
memory traffic in stencil calculations. We formulated our approach by starting
with a description of the data flow in the calculation (a fundamental character-
istic of the algorithm), rather than by searching for locality based on the arrays
used by the programmer (an artifact of the expression of the algorithm). While
both approaches produce the same iteration space transformation, our approach
does provide insight into what values actually need to be written out to main
memory.

10
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